The Middle Route of South-to-North Water Diversion Project (MRSNWD) is the main skeleton of China's National Water Network, its construction has changed the structure of the original water network, and analyzing the topological change of the water network in context with MRSNWD is significant for water network planning and management. In this study, the overall network characteristics of the water network in 2010 and 2020 were analyzed based on the small-world and scale-free characteristics of complex network theory. The topological changes of the water network from a node perspective were examined using three network centrality indexes: degree centrality (DC), closeness centrality (CC), and betweenness centrality (BC), while assessing the important nodes of the water network and recognizing functional areas of cold-hot spots. The results show that the water network's centrality in the study area improved after the project construction, with the average degree of the water network increasing from 2.39 to 2.42 and the average path length decreasing from 111.81 to 97.08. The propagation efficiency and network stability also increased, with a rise in important node proportion from 9.8 to 14.4%. The nodes in the DC hotspot zone along the project route have increased by 1.5%, implying an increase in the connectivity of the water network, while MRSNWD optimizes its north-south hub propagation path. "Small-worldness" indicates that most nodes of a network can be accessed and connected over shorter paths. The water network has a significant "small-worldness" and has been enhanced by the MRSNWD's construction. Approximating the water network as a scale-free network can impact its security by identifying critical nodes. The results of this research can provide the necessary technical support and reference significance for China's National Water Network.