We report on the trace analysis of copper and iron impurities in multicrystalline silicon wafers with the microbeam X-ray fluorescence (μ-XRF) technique. The efficiency of solar cells, which are based on multicrystalline silicon wafers, is strongly influenced by minor contamination with metals such as copper and iron. Application of compound refractive lenses (CRLs) in μ-XRF allows versatile two-dimensional mapping of relevant contaminations and localization of their sites of deposition. In this context, the measured bulk average limit of detection (LOD) was one picogram of iron and copper per gram of silicon. We suggest that μ-XRF is a valuable tool for non-destructive spatial (3D) quantification of metal impurities in a wide range of materials and devices whose functioning could be critically affected by impurities.