AbstractThis paper considers the dynamic output feedback robust model predictive control (MPC) for a system with both polytopic model parametric uncertainty and bounded disturbance. For this topic, the techniques for handling the unknown true state are crucial, and the strict guarantee of the input/output/state constraints favors replacing the true state by its bound in the optimization problems. The previous utilized polyhedral bounds, constructed by virtue of the error signals which are some linear combinations of the true state, the estimated state and the output, are generalized, where a bias item is utilized. Based on this unified bounding approach, new techniques for handling the unknown true state are given for both the main and the auxiliary optimization problems. As before, the main optimization problem calculates the control law parameters conditionally, and the auxiliary optimization problem determines the time to refresh these parameters. By applying the proposed method, the augmented state of the closed‐loop system is guaranteed to converge to the neighborhood of the equilibrium point. A numerical example is given to illustrate the effectiveness of the new method.