Abstract

Characterization of the rate-equivocation region of a general wiretap channel involves two auxiliary random variables: <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">U</i> , for rate splitting and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> , for channel prefixing. In this paper, we explore specific classes of wiretap channels for which the evaluation of the rate-equivocation region is simpler. We show that if the wiretap channel is more capable, <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> = <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</i> is optimal and the boundary of the rate-equivocation region is achieved by varying rate splitting <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">U</i> alone. Conversely, we show under a mild condition that if the wiretap channel is not more capable, then <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> = <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</i> is strictly suboptimal. Next, we focus on the class of cyclic shift symmetric wiretap channels. We show that optimal rate splitting <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">U</i> that achieves the boundary of the rate-equivocation region is uniform with cardinality | <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</i> | and the prefix channel between optimal <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">U</i> and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> is expressed as cyclic shifts of the solution of an auxiliary optimization problem over a single variable. We provide a special class of cyclic shift symmetric wiretap channels for which <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">U</i> =φ is optimal. We apply our results to the binary-input cyclic shift symmetric wiretap channels and thoroughly characterize the rate-equivocation regions of the BSC-BEC and BEC-BSC wiretap channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call