Let $L_{n}$ be the free Lie algebra of rank $n$ over a field $K$ of characteristic zero, $L_{n,c}=L_{n}/(L_{n}''+\gamma_{c+1}(L_{n}))$ be the free metabelian nilpotent of class $c$ Lie algebra, and $F_{n}=L_{n}/L_{n}''$ be the free metabelian Lie algebra generated by $x_1,\ldots,x_n$ over a field $K$ of characteristic zero. We call a polynomial $p(X_n)$ in these Lie algebras {\it symmetric} if $p(x_1,\ldots,x_n)=p(x_{\pi(1)},\ldots,x_{\pi(n)})$ for each element of the symmetric group $S_n$. The sets $L_n^{S_n}$, $F_n^{S_n}$, and $L_{n,c}^{S_n}$ of symmetric polynomials coincides with the algebras of invariants of the group $S_n$ in $L_{n}$, $F_{n}$, and $L_{n,c}$, respectively. We determine the groups $\text{\rm Inn}(L_{n,c}^{S_n})\cap \text{\rm Inn}(L_{n,c})$ and $\text{\rm Inn}(F_{n}^{S_n})\cap \text{\rm Inn}(F_{n})$ of inner automorphisms of the algebras $L_{n,c}^{S_n}$ and $F_{n}^{S_n}$ in the groups $\text{\rm Inn}(L_{n,c})$ and $\text{\rm Inn}(F_{n})$, respectively. In particular, we obtain the descriptions of the groups $\text{\rm Aut}(L_{2}^{S_2})\cap \text{\rm Aut}(L_{2})$ and $\text{\rm Aut}(F_{2}^{S_2})\cap \text{\rm Aut}(F_{2})$ of automorphisms of the algebras $L_{2}^{S_2}$ and $F_{2}^{S_2}$ in the groups $\text{\rm Aut}(L_{2})$ and $\text{\rm Aut}(F_{2})$, respectively.
Read full abstract