Abstract
This paper is devoted to the descriptions of automorphisms and local automorphisms on complex solvable Lie algebras of maximal rank. First, it is established that any automorphism on a solvable Lie algebra of maximal rank can be represented as a product (composition) of inner, diagonal and graph automorphisms. We apply the description of automorphism to the specification of automorphisms on solvable Lie algebras of maximal rank with abelian nilradical, and to the description of automorphisms of standard Borel subalgebras of complex simple Lie algebras. Based on the representation of an automorphism, it is proved that all local automorphisms on a solvable Lie algebra of maximal rank are global automorphisms. We also present two examples of solvable Lie algebras which are not of maximal rank and have different behaviours of local automorphisms. Namely, the first algebra does not admit pure local automorphisms, while the second algebra admits a local automorphism which is not an automorphism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.