Abstract

Finite dimensional Lie algebras are semi-direct product of the semi-simple Lie algebras and solvable Lie algebras. Brieskorn gave the connection between simple Lie algebras and simple singularities. Simple Lie algebras have been well understood, but not the solvable (nilpotent) Lie algebras. It is extremely important to establish connections between singularities and solvable (nilpotent) Lie algebras. In this article, a new natural connection between the set of complex analytic isolated hypersurface singularities and the set of finite dimensional solvable (nilpotent) Lie algebras has been constructed. We construct finite dimensional solvable (nilpotent) Lie algebras naturally from isolated hypersurface singularities. These constructions help us to understand the solvable (nilpotent) Lie algebras from the geometric point of view. Moreover, it is known that the classification of nilpotent Lie algebras in higher dimensions ($\gt 7$) remains to be a vast open area. There are one-parameter families of non-isomorphic nilpotent Lie algebras (but no two-parameter families) in dimension seven. Dimension seven is the watershed of the existence of such families. It is well-known that no such family exists in dimension less than seven, while it is hard to construct one-parameter family in dimension greater than seven. In this article, we construct an one-parameter family of solvable (resp. nilpotent) Lie algebras of dimension $11$ (resp. $10$) from $\tilde{E}_7$ singularities and show that the weak Torelli-type theorem holds. We shall also construct an one-parameter family of solvable (resp. nilpotent) Lie algebras of dimension $12$ (resp. $11$) from $\tilde{E}_8$ singularities and show that the Torelli-type theorem holds. Moreover, we investigate the numerical relation between the dimensions of the new Lie algebras and Yau algebras. Finally, the new Lie algebras arising from fewnomial isolated singularities are also computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.