Abstract

Let $K$ be a field of characteristic zero, and $L_{m,c}$ be the free metabelian nilpotent Lie algebra of class $c$ of rank $m$ over $K$. We call an automorphism $\phi$ pointwise inner, if there exists an inner automorphism $\xi_i$ for each generator $x_i$, $i=1,\ldots,m$, such that $\phi(x_i)=\xi_i(x_i)$. In this study, we exemine the group $PI(L_{m,c})$ of pintwise inner automorphisms of the Lie algebra $L_{m,c}$, and we provide a set of generators for this group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.