Abstract
We determine the exact values of the commutator width of absolutely free and free solvable Lie rings of finite rank, as well as free and free solvable Lie algebras of finite rank over an arbitrary field. We calculate the values of the commutator width of free nilpotent and free metabelian nilpotent Lie algebras of rank 2 or of nilpotency class 2 over an arbitrary field. We also find the values of the commutator width for free nilpotent and free metabelian nilpotent Lie algebras of finite rank at least 3 over an arbitrary field in the case that the nilpotency class exceeds the rank at least by 2. In the case of free nilpotent and free metabelian nilpotent Lie rings of arbitrary finite rank, as well as free nilpotent and free metabelian nilpotent Lie algebras of arbitrary finite rank over the field of rationals, we calculate the values of commutator width without any restrictions. It follows in particular that the free or nonabelian free solvable Lie rings of distinct finite ranks, as well as the free or nonabelian free solvable Lie algebras of distinct finite ranks over an arbitrary field are not elementarily equivalent to each other. We also calculate the exact values of the commutator width of free ℚ-power nilpotent, free nilpotent, free metabelian, and free metabelian nilpotent groups of finite rank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.