Ride comfort is an important requirement that passenger rail vehicles must meet. Carbody–anti-bending system is a relatively new passive method to enhance the ride comfort in passenger rail vehicles with long and light carbody. The resonance frequency of the first bending mode (FBM) of such vehicle is within the most sensitive frequency range that affects ride comfort. Anti-bending bars consist of two bars that are mounted under the longitudinal beams of the carbody chassis using vertical supports. When the carbody bends, the anti-bending bars develop moments in the neutral axis of the carbody opposing the bending of the carbody. In this way, the carbody structure becomes stiffer and the resonance frequency of the FBM can be increased beyond the upper limit of the discomfort range of frequency, improving the ride comfort. The theoretical principle of this method has been demonstrated employing a passenger rail vehicle model that includes the carbody as a free–free Euler–Bernoulli beam and the anti-bending bars as longitudinal springs jointed to the vertical supports. Also, the method feasibility has been verified in the past using an experimental scale demonstrator system. In this paper, a new model of the carbody–anti-bending bar system is proposed by including three-directional elastic elements (vertical and longitudinal direction and rotation in the vertical–longitudinal plane) to model the fastening of the anti-bending bars to the supports and the vertical motion of the anti-bending bars modelled as free–free Euler–Bernoulli beams connected to the elastic elements of the fastening. In the longitudinal direction, the anti-bending bars work as springs connected to the longitudinal elastic elements of the fastening. The modal analysis method is applied to point out the basic properties of the frequency response functions (FRFs) of the carbody–anti-bending bars system, considering the bounce and FBMs of both the carbody and the anti-bending bars. A parametric study of the FRF of the carbody shows that the vertical stiffness of the fastening should be sufficiently high enough to eliminate the influence of the modes of the anti-bending bars upon the carbody response and to reduce the anti-bending bars vibration in the frequency range of interest. Longitudinal stiffness of the elastic elements of the fastening is critical to increase the bending resonance frequency of the carbody out of the sensitive range. Longer anti-bending bars can improve the capability of the anti-bending bars to increase the bending resonance without the risk of interference effects caused by the bounce and bending modes of the anti-bending bars.
Read full abstract