Abstract
The overall stiffness and modal frequency of the car body of a rapid box car are reduced by the design of the full-side open movable side door structure. The vibration fatigue performance of the welded structure in this car body needs to be verified. The rigid-flexible coupling model of the rapid box wagon was established first, and the model was verified by modal test data. By the application of the virtual iteration method on this model, the displacement excitation loads of this vehicle were acquired. The effectiveness of the load reverse obtaining technology was verified through the comparison between calculated data and the experimental data. Based on the rigid-flexible coupling model and the load obtained by reverse engineering, the fatigue life of the welded structure in the car body was evaluated through the modal structural stress method. The calculated results show that the car body structure obtains obvious modal vibration, which leads to short fatigue life in several weld lines. According to the application requirements of this wagon, the local improvement scheme was proposed, and the effect of the improvement program was evaluated. In this paper, a new fatigue evaluation technology based on the load reverse method of test data was proposed, which provides a theoretical basis for the structural design and program improvement of railway vehicles.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have