Chronic Venous Disorders (CVD) of lower limbs are one of the most prevalent medical conditions, affecting 35% of adults in Europe and North America. The early diagnosis of CVD is critical, however, the diagnosis relies on a visual recognition of the various venous disorders which is time- consuming and dependent on the physician's expertise. Thus, automatic strategies for the classification of the CVD severity are claimed. This paper proposed an automatic ensemble-based strategy of Deep Convolutional Neural Networks (DCNN) for the classification of CVDs severity from medical images. First, a clinical dataset containing 1376 images of patients' legs with CVD of 5 different levels of severity was constructed. Then, the constructed dataset was randomly split into training, testing, and validation datasets. Subsequently, a set of DCNN were individually applied to the images for classification. Finally, instead of a traditional voting ensemble strategy, extracted feature vectors from each DCNN were concatenated and fed into a new ensemble optimization network. Experiments showed that the proposed strategy achieved a classification with 93.8%, 93.4%, 92.4% of accuracy, precision, and recall, respectively. Moreover, compared to the traditional ensemble strategy, improvement in the accuracy of ~2% was registered. The proposed strategy showed to be accurate and robust for the diagnosis of CVD severity from medical images. Nevertheless, further research using an extensive clinical database is required to validate the potential of this strategy. Clinical Relevance- An automatic classification of CVD to reduce the probability of underdiagnoses and promote the treatment of CVD in the early stages.
Read full abstract