Taxonomic descriptions are unparalleled sources of knowledge of life's phenotypic diversity. As natural language prose, these data sets are largely refractory to computation and integration with other sources of phenotypic data. By formalizing taxonomic descriptions using ontology-based semantic representation, we aim to increase the reusability and computability of taxonomists' primary data. Here, we present a revision of the ensign wasp (Hymenoptera: Evaniidae) fauna of New Caledonia using this new model for species description. Descriptive matrices, specimen data, and taxonomic nomenclature are gathered in a unified Web-based application, mx, then exported as both traditional taxonomic treatments and semantic statements using the OWL Web Ontology Language. Character:character-state combinations are then annotated following the entity–quality phenotype model, originally developed to represent mutant model organism phenotype data; concepts of anatomy are drawn from the Hymenoptera Anatomy Ontology and linked to phenotype descriptors from the Phenotypic Quality Ontology. The resulting set of semantic statements is provided in Resource Description Framework format. Applying the model to real data, that is, specimens, taxonomic names, diagnoses, descriptions, and redescriptions, provides us with a foundation to discuss limitations and potential benefits such as automated data integration and reasoner-driven queries. Four species of ensign wasp are now known to occur in New Caledonia: Szepligetella levipetiolata, Szepligetella deercreeki Deans and Mikó sp. nov., Szepligetella irwini Deans and Mikó sp. nov., and the nearly cosmopolitan Evania appendigaster. A fifth species, Szepligetella sericea, including Szepligetella impressa, syn. nov., has not yet been collected in New Caledonia but can be found on islands throughout the Pacific and so is included in the diagnostic key. [Biodiversity informatics; Evaniidae; New Caledonia; new species; ontology; semantic phenotypes; semantic species description; taxonomy.]
Read full abstract