A new, completely automated gas chromatography technique has been developed to separate the different gaseous compounds produced during underground coal gasification for their (13)C/(12)C and D/H isotope ratio measurements. The technique was designed for separation and collection of H(2), CO, CO(2), H(2)O, H(2)S, CH(4), and heavier hydrocarbons. These gaseous compounds are perfectly separated by the gas-phase chromatograph and quantitatively sent to seven combustion and collection lines. H(2), CO, CH(4), and heavier hydrocarbons are quantitatively oxidized to CO(2) and/or H(2)O. The isotopic analyses are performed by the sealed-tube method. The zinc method is used for reduction of both water and H(2)S to hydrogen for D/H analysis. Including all preparation steps, the reproducibility of isotope abundance values, for a quantity higher than or equal to 0.1 mL of individual components in a mixture (5 mL of gases being initially injected in the gas chromatograph), is ±0.1‰ for δ(13)C(PDB) and ±6‰ for δD(SMOW).
Read full abstract