We describe a method for indexing and retrieving high-resolution image regions in large geospatial data libraries. An automated feature extraction method is used that generates a unique and specific structural description of each segment of a tessellated input image file. These tessellated regions are then merged into similar groups, or sub-regions, and indexed to provide flexible and varied retrieval in a query-by-example environment. The methods of tessellation, feature extraction, sub-region clustering, indexing, and retrieval are described and demonstrated using a geospatial library representing a 153 km2 region of land in East Tennessee at 0.5 m per pixel resolution.
Read full abstract