In the aerospace field, lightweight design is a never-ending pursuit. By integrating structural bionics and structural optimization, the vertical bracket of a wide angle auroral imager is designed and manufactured by additive manufacturing technology in this work. Initially, the classical topology optimization is utilized for the vertical bracket to find the optimal material layout and primary load carrying paths. Drawing on the width-to-diameter ratio and the bone mineral density distribution of human femur, the vertical support is designed as a bionic structure with a solid middle section and thin wall in other parts. Afterwards, size optimization is maintained for the bionic design model to obtain the optimal model. The simulation results show that the three-way eigenfrequencies of bionic optimized structure are 320 Hz, 303 Hz, and 765 Hz, respectively, which are closely approximate to the original structure. However, the mass of bionic optimized structure is reduced by 23%. Benefiting from Selective laser melting, the complex optimized design can be rapidly manufactured. The three-way eigenfrequencies of the optimized structure measured by the 0.2 g sweep tests are 307 Hz, 292 Hz, and 736 Hz, respectively. The vibration test of bionic optimized structure verifies the accuracy of the simulation results. This study indicates that the combination of structural bionics and structural optimization provides a powerful tool kit to the design of similar support structure for space applications.