Focusing on a single source within a complex auditory scene is challenging. M/EEG-based auditory attention detection (AAD) allows to detect which stream an individual is attending to within a set of multiple concurrent streams. The high interindividual variability in the auditory attention detection performance often is attributed to physiological factors and signal-to-noise ratio of neural data. We hypothesize that executive functions-in particular sustained attention, working memory, and attentional inhibition-may partly explain the variability in auditory attention detection performance, because they support the cognitive processes required when listening to complex auditory scenes. We chose a particularly challenging auditory scene by presenting dichotically polyphonic classical piano excerpts that lasted 1min each. Two different excerpts were presented simultaneously, one in each ear. Forty-one participants, with different degrees of musical expertise, listened to these complex auditory scenes focusing on one ear while we recorded the EEG. Participants also completed several tasks assessing executive functions. As expected, EEG-based auditory attention detection was greater for attended than unattended stimuli. Importantly, attentional inhibition ability did explain 6% of the reconstruction accuracy and 8% of the classification accuracy. No other executive function was a significant predictor of reconstruction or classification accuracies. No clear effect of musical expertise was found on reconstruction and classification performance. In conclusion, cognitive factors seem to impact the robustness of the neural auditory representation and hence the performance of EEG-based decoding approaches. Taking advantage of this relation could be useful to improve next-generation hearing aids.
Read full abstract