The dissolution and interfacial reactions involving thin-film Ti/Ni/Ag metallizations on two semiconductor devices, diode and metal-oxide-semiconductor field-effect transistor (MOSFET), a Sn–3.0Ag–0.7Cu solder, and a Au-layer on the substrates are studied. To simulate the dissolution kinetics of the Ag-layer in liquid solder during the reflow process, the computational thermodynamics (Thermo-Calc) and kinetics (DICTRA: DIffusion Controlled TRAnsformations) tools are employed in conjunction with the assessed thermochemical and mobility data. The simulated results are found to be consistent with the observed as-reflowed microstructures and the measured Ag contents in the solder. In the as-reflowed joints two different intermetallic compounds (IMC) are found near the diode/solder interface. Both are in the form of particles of different morphologies, not a continuous layer, and are referred to as IMC-I and IMC-II. The former corresponds to Ni 3Sn 4 with Cu atoms residing in the Ni sublattice. It is uncertain whether IMC-II is Cu 6Sn 5 phase with Ni atoms residing in the Cu sublattice or a Cu–Ni–Sn ternary phase. Near the as-reflowed MOSFET/solder interface, both particles and a skeleton-like layer of Ni 3Sn 4 are observed. The primary microstructural dynamics during solid state aging are the coarsening of IMC particles and the reactions involving the unconsumed (after reflow) Ni- and the Ti-layer with Sn and Au. While the reaction with the Ni-layer yields only Ni 3Sn 4 intermetallic, the reaction involving the Ti-layer suggests the formation of Ti–Sn and Au–Sn–Ti intermetallics. The latter is due to the diffusion of Au from the substrate side to the die side. It is postulated that the kinetics of Au–Sn–Ti layer is primarily governed by the diffusion of Au through the Ni 3Sn 4 layer by a grain boundary mechanism.
Read full abstract