The masked face recognition-based attendance management system is an important biometric-based attendance tracking solution, especially in light of the COVID-19 pandemic. Despite the use of various methods and techniques for face detection and recognition, there currently needs to be a system that can accurately recognize individuals while they are wearing a mask. This system has been designed to overcome the challenges of widespread mask use, impacting the effectiveness of traditional face recognition-based attendance systems. The proposed system uses an innovative method that recognizes individuals even while wearing a mask without the need for removal. With its high compatibility and real-time operation, it can be easily integrated into schools and workplaces through an embedded system like the Jetson Nano or conventional computers executing attendance applications. This innovative approach and its compatibility make it a desirable solution for organizations looking to improve their attendance-tracking process. The Experimental results indicates using maximum resources possible the execution time needed on Jetson Nano is 15 to 22 seconds and 14 to 18 seconds respectively and the average frame capture if there are at least one face detected on Jetson Nano is 3-4 frames.
Read full abstract