AbstractUsing four basis sets, 6‐311G(d,p), 6‐31+G(d,p), 6‐311++G(2d,2p), and 6‐311++G(3df,3pd), the optimized structures with all real frequencies were obtained at the MP2 level for dimers CH2OHF, CH2OH2O, CH2ONH3, and CH2OCH4. The structures of CH2OHF, CH2OH2O, and CH2ONH3 are cycle‐shaped, which result from the larger bend of σ‐type hydrogen bonds. The bend of σ‐type H‐bond O…HY (YF, O, N) is illustrated and interpreted by an attractive interaction of a chemically intuitive π‐type hydrogen bond. The π‐type hydrogen bond is the interaction between one of the acidic H atoms of CH2O and lone pair(s) on the F atom in HF, the O atom in H2O, or the N atom in NH3. By contrast with above the three dimers, for CH2OCH4, because there is not a π‐type hydrogen‐bond to bend its linear hydrogen bond, the structure of CH2OCH4 is a noncyclic shaped. The interaction energy of hydrogen bonds and the π‐type H‐bond are calculated and discussed at the CCSD(T)/6‐311++G(3df,3pd) level. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005