Abstract

The perturbation theory of intermolecular forces in conjunction with the supermolecular Mo/ller–Plesset perturbation theory is applied to the analysis of the potential-energy surfaces of Kr–H2O and Kr–NH3 complexes. The valleylike minimum region on the potential-energy surface of Kr–H2O ranges from the coplanar geometry with the C2 axis of H2O nearly perpendicular to the O–Kr axis (T structure) to the H-bond structure in which Kr faces the H atom of H2O. Compared to the previously studied Ar–H2O [J. Chem. Phys. 94, 2807 (1991)] the minimum has more of the H-bond character. The minimum for Kr–NH3 corresponds to the T structure only, in accordance to the result for Ar–NH3 [J. Chem. Phys. 91, 7809 (1989)]. The minima in Kr–H2O and Kr–NH3 are roughly 27% and 19%, respectively, deeper than for the analogous Ar complexes. To examine the proton–donor abilities of O–H and N–H bonds the ratios of the deformation energy to dispersion energy are considered. They reflect fundamental differences between the two bonds and explain why NH3 is not capable of forming the H-bond structures to rare-gas atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.