Rapid detection of amines in complex mixtures presents a significant challenge. Here, we introduce a novel nuclear magnetic resonance (NMR) method for amine detection utilizing a probe with two fluorine atoms in distinct chemical environments. Upon interaction with an amine, the probe generates two atomic resonance peaks, which are used to create coordinates, revealing fluorine chemical shifts on the 19F NMR spectroscopy. This innovative approach allows for the clear distinction of amine signals in a two-dimensional plane. This method has been effectively employed in analyzing amines in pharmaceuticals and amino acids in Ophiopogon japonicus and dry white wine, providing a robust and general approach for amine analysis.
Read full abstract