Abstract

We show that an optimized loading of a cold ensemble of rubidium-87 atoms from a magnetic trap into an optical lattice sustained by a single, far-red-detuned mode of a high-Q optical cavity can be efficient despite the large volume mismatch of the traps. The magnetically trapped atoms are magnetically transported to the vicinity of the cavity mode and released from the magnetic trap in a controlled way meanwhile undergoing an evaporation period. Large number of atoms get trapped in the dipole potential of the cavity mode for several hundreds of milliseconds. We monitor the number of atoms in the mode volume by a second tone of the cavity close to the atomic resonance. While this probe tone can pump atoms to another ground state uncoupled to the probe, we demonstrate state-independent trapping by applying a repumper laser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call