Hydrogen boride (HB) sheets are emerging as a promising two-dimensional (2D) boron material, with potential applications as unique electrodes, substrates, and hydrogen storage materials. The 2D layered structure of HB was successfully synthesized using an ion-exchange method. The chemical bonding and structure of the HB sheets were investigated using Fourier Transform Infrared (FT-IR) spectroscopy and Transmission Electron Microscopy (TEM), respectively. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical states and transformation of the components before and after atomic hydrogen adsorption, thereby elucidating the atomic hydrogen adsorption process on HB sheets. Our results indicate that, upon atomic hydrogen adsorption onto the HB sheets, the B-H-B bonds were broken and converted into B-H bonds. This research highlights and demonstrates the changes in chemical states and component transformations of the boron element on the HB sheets' surface before and after atomic hydrogen adsorption, thus providing a clearer understanding of the unique bonding and structural characteristics of the HB sheets.