Abstract

Based on first principles density functional theory (DFT) methods, this study employed the Cambridge Serial Total Energy Package (CASTEP) module within Materials Studio (MS) software under the generalized gradient approximation to investigate the adsorption, diffusion behavior, and electronic properties of hydrogen atoms on α-Fe(110) and α-Fe(110)-Me (Mn, Cr, Ni, Mo) surfaces, including calculations of their adsorption energies and density of states (DOS). The results demonstrated that doping with alloy atoms Me increased the physical adsorption energy of H2 molecules on the surface. Specifically, Mo doping elevated the adsorption energy from −1.00825 eV to −0.70226 eV, with the largest relative change being 30.35%. After doping with Me, the chemical adsorption energy of two hydrogen atoms does not change significantly, among which doping with Cr results in a decrease in the chemical adsorption energy. Building on this, further analysis of the chemical adsorption of single atoms on the surface was conducted. By comparing the adsorption energy and the bond length between a hydrogen atom and iron/dopant metal atom, it was found that Mo doping has the greatest impact, increasing the bond length by 58.58%. Analysis of the DOS functions under different doping conditions validated the interaction between different alloy elements and H atoms. Simultaneously, simulations were carried out on the energy barrier crossed by H atoms diffusing into the metal interior. The results indicate that Ni doping facilitates the diffusion of H atoms, while Cr, Mn, and Mo hinder their diffusion, with Mo having the most significant effect, where its barrier is 21.88 times that of the undoped surface. This conclusion offers deep insights into the impact of different doping elements on hydrogen adsorption and diffusion, aiding in the design of materials resistant to hydrogen embrittlement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call