For the ever-increasing demand for highly safe lithium-ion batteries (LIBs), the common sol-gel process provides heat-resistance to separators with an inorganic coating, where the adhesion to the separator is the key to safety and stability. In this paper, we present a SiO2.01C0.23Hx-coated polyethylene (PE) separator through a roll-to-roll atmospheric plasma-enhanced chemical vapor deposition (R2R-APECVD) of hexamethyldisiloxane (HMDSO)/Ar/O2. The adhesion strength of SiO2.01C0.23Hx-coated PE was tested by peel-off test and found to be higher than that of the commercial Al2O3-coated separator (0.28 N/mm vs. 0.06 N/mm). Furthermore, the SiO2.01C0.23Hx-coated PE separator showed better electrochemical performance in C-rate and long term cycle tests. FTIR, SEM, and XPS analysis indicate that the increased adhesion and electrochemical performance are attributed to the inner hybrid SiO2.01C0.23Hx coating with organic and inorganic components.
Read full abstract