In the optical satellite on-orbit imaging quality estimation system, the calculation of Modulation Transfer Function (MTF) is not fully standardized, and the influence of atmosphere is often simplified, making it difficult to obtain completely consistent on-orbit MTF measurements and comparisons. This study investigates the effects of various factors—such as edge angle, edge detection methods, oversampling rate, and interpolation techniques—on the accuracy of MTF calculations in the commonly used slanted-edge method for on-orbit MTF assessment, informed by simulation experiments. A relatively optimal MTF calculation process is proposed, which employs the Gaussian fitting method for edge detection, the adaptive oversampling rate, and the Lanczos (a = 3) interpolation method, minimizing the absolute deviation in the MTF results. A method to quantitatively analyze the atmospheric scattering and absorption MTF is proposed that employs a radiative transfer model. Based on the edge images of GF-2 satellite, images with various atmospheric conditions and imaging parameters are simulated, and their atmospheric scattering and absorption MTF is obtained through comparing the MTFs of the ground and top atmosphere radiance. The findings reveal that aerosol optical depth (AOD), viewing zenith angle (VZA), and altitude (ALT) are the primary factors influencing the accuracy of GF-2 satellite on-orbit MTF measurements in complex scenarios. The on-orbit MTF decreases with the increase in AOD and VZA and increases with the increase in ALT. Furthermore, a collaborative analysis of the main influencing factors of atmospheric scattering and absorption MTF indicates that, taking the PAN band of the GF-2 satellite as an example, the atmospheric MTF values are consistently below 0.7905. Among these, 90% of the data are less than 0.7520, with corresponding AOD conditions ranging from 0 to 0.08, a VZA ranging from 0 to 50°, and an ALT ranging from 0 to 5 km. The results can provide directional guidance for the selection of meteorological conditions, satellite attitude, and geographical location during satellite on-orbit testing, thereby enhancing the ability to accurately measure satellite MTF.
Read full abstract