Transmitter release at Cs(+)-loaded autaptic terminals was selectively activated by the subthreshold concentration of external K+, and Ca(2+) channel types and transmitter pools involved in synchronous and asynchronous exocytosis were studied. When a neuron was depolarized to +30 mV by applying a current through a pipette containing Cs(+) for >30 s, a rapid external K+ jump to 3.75-10 mM, otherwise ineffective, produced an outward current (K10 response). K10 responses were initially graded (type-1) and then became a spike and plateau-shape with (type-2) or without a latency (type-3). On repolarization to -60 mV, a high K+ jump induced inward currents (called also K10 response) similar to those at +30 mV, whose shape changed from that of type-3, then type-2 and finally type-1 over 30 min. During a period favorable for inducing a type-3 response, a current similar to this response was generated by a voltage pulse (+ 80 or 90 mV, 20 or 30 ms) to the cell soma. Currents similar to K10 responses were rarely induced by a high K+ jump without a conditioning depolarization except for some cells, but consistently produced when 3 mM Cs(+) and 50 microM 4-aminopyridine were externally applied for tens of minutes. Picrotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione with 3-[(RS)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid or Cd(2+) in, or Ca(2+) removal from, a high-K+ solution blocked all the K10 responses, while a plateau remaining after a high K+ jump was not blocked by Ca(2+) removal immediately after the K+ jump. Thus Cs(+) loading and decreased K+ concentration in autaptic terminals by a conditioning depolarizing current selectively sensitize the terminals to a subthreshold high K+ jump for depolarization to activate synchronous or asynchronous transmitter release. Nicardipine (5-10 microM) blocked type-1 and -2 responses but not type-3 responses, while omega-conotoxin (10 microM) blocked all the types of K10 response in the presence of nicardipine. Increasing the interval of high K+ jumps biphasically increased the magnitude of K10 response, preferentially in the postjump fraction reflecting purely the asynchronous activation of exocytotic machinery, and decreased the reduction of miniature postsynaptic current frequency after a K10 response. These results suggest the roles of N(P/Q)-type Ca(2+) channels in synchronous exocytosis at the terminals, L-type Ca(2+) channels in initiating a Ca(2+) action potential at the parent axon and both types in asynchronous exocytosis and also suggest the different releasable pools of transmitter for two modes of exocytosis in cultured hippocampal neurons.
Read full abstract