Abstract

Transmitter release at an excitatory synapse has two components, fast synchronous and slow asynchronous transmitter release. Using the whole cell recording technique, we investigated the developmental properties of neurotransmitter release, which is composed of the two components in the intermediate and medial part of the hyperstriatum ventral (IMHV) of chicks during the critical period for imprinting. Analysis of the paired-pulse responses revealed that the depression of the excitatory postsynaptic currents (EPSCs), driven mainly by fast synchronous release, was frequently observed in P0-1 chicks but not in those at P5-8. The spontaneous excitatory postsynaptic currents (sEPSCs) after the paired-pulse stimulation, which were thought to be driven by asynchronous transmitter releases, were observed more frequently in P0-1 chicks than P5-8 chicks. Furthermore, examination of Ca2+ dependency in the evoked EPSCs showed that the amplitudes in P5-8 chicks were more sensitive to reduction of the extracellular Ca2+ concentration than younger chicks. Considering that the Ca2+ dependency of EPSCs is defined by both Ca2+ sensitivity and the proportion of each type of release machineries at the release site, these results indicate that the ratio of fast synchronous to slow asynchronous transmitter release machinery changed during the critical period. These changes may play critical roles in the capacity of the avian brain to consolidate novel experience in the immediate period after hatching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.