Recent technological advances allow us to view chemical mass-action systems as analog computers. In this context, the inputs to a computation are encoded as initial values of certain chemical species while the outputs are the limiting values of other chemical species. In this paper, we design chemical systems that carry out the elementary arithmetic computations of: identification, inversion, mth roots (for m≥2), addition, multiplication, absolute difference, rectified subtraction over non-negative real numbers, and partial real inversion over real numbers. We prove that these “elementary modules” have a speed of computation that is independent of the inputs to the computation. Moreover, we prove that finite sequences of such elementary modules, running in parallel, can carry out composite arithmetic over real numbers, also at a rate that is independent of inputs. Furthermore, we show that the speed of a composite computation is precisely the speed of the slowest elementary step. Specifically, the scale of the composite computation, i.e. the number of elementary steps involved in the composite, does not affect the overall asymptotic speed – a feature of the parallel computing nature of our algorithm. Our proofs require the careful mathematical analysis of certain non-autonomous systems, and we believe this analysis will be useful in different areas of applied mathematics, dynamical systems, and the theory of computation. We close with a discussion on future research directions, including numerous important open theoretical questions pertaining to the field of computation with reaction networks.
Read full abstract