Abstract

We study an integro-difference equation model that describes the spatial dynamics of a species with a strong Allee effect in a shifting habitat. We examine the case of a shifting semi-infinite bad habitat connected to a semi-infinite good habitat. In this case we rigorously establish species persistence (non-persistence) if the habitat shift speed is less (greater) than the asymptotic spreading speed of the species in the good habitat. We also examine the case of a finite shifting patch of hospitable habitat, and find that the habitat shift speed must be less than the asymptotic spreading speed associated with the habitat and there is a critical patch size for species persistence. Spreading speeds and traveling waves are established to address species persistence. Our numerical simulations demonstrate the theoretical results and show the dependence of the critical patch size on the shift speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.