This work describes a novel fully integrated rectenna circuit using tunnelling-based devices for implanted medical devices. An ASPAT (Asymmetric Spacer Layer Tunnel Diode) was used as the active rectifier due to its high non-linearity and temperature insensitivity features. A miniaturized geometry rectenna ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1 \times 5$ </tex-math></inline-formula> mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) with improved matching characteristics was demonstrated, by integrating a Cockcroft-Walton rectifier with an L-shaped planar folded antenna structure operating at ISM frequency bands. The circuit performance was experimentally explored at various separation distance between transmitter and receiver units. For a 5cm transmission set-up, the rectenna with a single-stage rectifier delivered 0.8V output at 20dBm transmit power. An extended doubler configuration exhibited enhanced performance when multiple stages are used, is predicted to reach 0.24mW output power at 23dBm transmit power and yielding ~1.6V output voltage with an efficiency of 0.12%. These findings can assist in compensating for the degraded antenna gain attributed to the extremely small effective-radiating area of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$0.04\lambda $ </tex-math></inline-formula> . Furthermore, the ability of controlling the antenna input impedance helps in circumventing the requirement for a matching circuitry thereby offering further reduction in chip size.