We study a strong coupling bipolaron’s vibrational frequency, self-trapping energy and potential induced by the electron–longitudinal optical (LO) phonon interaction in an asymmetric quantum dot (AQD). The effects of the electron–phonon coupling strength, the transverse and longitudinal effective confinement lengths are taken into account by using linear combination operator and unitary transformation methods. It is found that the vibrational frequency is an increasing function of the electron–phonon coupling strength, whereas it is a decreasing one of the transverse and longitudinal effective confinement lengths. The absolute values of the self-trapping energy and the potential induced by the electron–LO phonon interaction will increase with increasing coupling strength or decreasing effective confinement lengths.