The cavitation erosion (CE) resistance of an UNS S32205 duplex stainless steel (DSS) was improved through microstructural modification using friction stir processing (FSP). As-received material was processed using 200rpm and 100mm/min spindle and travel speeds, respectively. The cavitation erosion tests were performed in a vibratory apparatus according to ASTM G32 standard. The incubation period, the maximum erosion rate and the variation of surface roughness during the tests are reported and the results are compared with those obtained for the base metal samples (BMS). The worn surfaces were characterized using roughness measurements and scanning electron microscopy (SEM). After a CE testing time of 10h, FSP samples showed a 70% diminution of the mass loss when compared to the BMS. Moreover, a 200% enhancement of incubation time and 100% reduction in the erosion rate were achieved after FPS. The improvement of CE performance is related to the recrystallized and refined microstructure, as well as to the modification of the elongated α/γ interfaces.
Read full abstract