This study was designed to evaluate the effect of beta-sitosterol (BS) on the peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression role in the activity of paraoxonase (PON-1) enzyme in oxidative stress status of irradiated rats. Animals were exposed to whole body γ-radiation single dose 6 Gy and received BS dose (40 mg·(kg body mass)-1·day -1, orally). In liver tissue, gene expression of PPAR-γ ligand was determined. Oxidative stress marker (malondialdehyde, MDA) and antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), PON-1, and arylesterase (ARE)) were assayed in serum and liver tissue. Also, serum lipid profile (cholesterol, triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c)) was measured. In irradiated animals that received BS, expression of PPAR-γ ligand increase significantly associated with increase in PON-1 and ARE enzyme activities. Also, the activities of SOD, CAT enzymes, and HDL-c levels display elevation. By contrast, significant decrease in MDA content, cholesterol, TG, and LDL-c levels were revealed after BS administration. Our findings in this study provide the evidence that BS has radio-protective effect via regulating the gene expression of PPAR-γ, causing an increase in PON-1 and ARE enzyme activities. This action of BS is due to its free radical scavenging properties, antioxidant effect, lowering of cholesterol, and PPAR-γ agonist properties.
Read full abstract