Fluoride ion affinity (FIA) values (and the associated pF(-) values) are difficult to establish experimentally for pentafluorides of arsenic and antimony. Our approach, utilizing estimated lattice potential energies, provides a further opportunity to establish this data for liquid (and gaseous) SbF(5) and gaseous AsF(5) which compliments values obtained using ab initio routes for monomeric gas phase molecules and adds to results based on rigorous methods. A strategy is developed whereby construction of (multiple) Born-Fajans-Haber cycles centered around the (target) FIA reaction of interest yield a plethora of estimates for the enthalpy change of interest. This general approach is illustrated here by specific estimation of some experimentally based FIA values of SbF(5) and AsF(5). FIA values/kJ mol(-1) and pF- values estimated in this paper are FIA(SbF(5),l) approximately equal to -475 (+/-63), pF-(SbF(5),l) = 11.4 (+/-1.5); FIA(SbF(5),g) approximately equal to -506 (+/-63), pF-(SbF(5),g) = 12.4 (+/-1.5); FIA(2SbF(5),l) approximately equal to -609 (+/-63), pF- (2SbF(5),l) = 14.6 (+/-1.5); FIA (2SbF(5),g) approximately equal to -671 (+/-63), pF- (2SbF(5),g) = 16.0 (+/-1.5); FIA (3SbF(5),l) approximately -635 (+/-39), pF(-) (3SbF(5),l) = 15.2 (+/-0.9); FIA(3SbF(5),g) approximately -728 (+/-39), pF(-) (3SbF(5),g) = 17.4 (+/-0.9); FIA(AsF(5),g) approximately equal to -421 (+/-22), pF(-) (AsF(5),g) = 10.1 (+/- 0.5); and FIA (AsF(5).SO(2),s) approximately equal to -390 (+/-22), pF(-) (AsF(5).SO(2),s) = 9.3 (+/-0.5). Related standard enthalpies of formation (in kJ mol(-1)) are also assigned: Delta(f)H degrees (SbF(6)(-),g) approximately equal to -2075 (+/-52); Delta(f)H degrees (Sb(2)F(11)(-),g) approximately equal to -3520 (+/-63); Delta(f)H degrees (Sb(3)F(16)(-),g) approximately equal to -4874 (+/-39); Delta(f)H degrees (NF(4)(+),g) approximately equal to 903 (+/-32); Delta(f)H degrees (AsF(6)(-),g) approximately equal to -1907 (+/-22).
Read full abstract