Abstract

Arsenic pentafluoride (AsF5) is a highly toxic gas molecule that finds its application in the manufacturing of electro-conductive polymers. Besides, exposure to AsF5 molecule may invite several health issues, for instance, central-nervous-system disorders. Thus, the detection of AsF5 gas is a significant and important concern for public health. For the very first time, we built a novel Kagome phosphorene nanosheet (Kagome-PNS) to study the adsorption behavior of AsF5 molecule on the Kagome-PNS surface using density-functional theory method. The Kagome-PNS owns semiconductor property with an energy gap value of 1.22 eV. Initially, the geometrical stability of Kagome-PNS was verified with the negative value of cohesive formation energy. The transport properties of Kagome-PNS have also been carried out using current-voltage characteristics. Moreover, AsF5 gas molecules are physisorbed on Kagome-PNS, the adsorption energy of the preferential complex structures is found to be −0.099 to −0.377 eV. An innovative finding of the present study acclaims that Kagome-PNS can be proficiently used as a chemical sensor to detect AsF5 gas molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.