The flow behavior of a new kind of high-strength nickel brass used as automobile synchronizer rings was investigated by hot compression tests with a Gleeble-3500 isothermal simulator at strain rates ranging from 0.01 to 10 s−1 and a wide deformation temperature range of 873–1073K at intervals of 50 K. The experimental results show that flow stress increases with increasing strain rate and decreasing deformation temperature, and discontinuous yielding appeared in the flow stress curves at higher strain rates. A modified Arrhenius constitutive model considering the compensation of strain was established to describe the flow behavior of this alloy. A processing map was also constructed with strain of 0.3, 0.6, and 0.9 based on the obtained experimental flow stress–strain data. In addition, the optical microstructure evolution and its connection with the processing map of compressed specimens are discussed. The predominant deformation mechanism of Cu-Ni-Al brass is dynamic recovery when the deformation temperature is lower than 973 K and dynamic recrystallization when the deformation temperature is higher than 973 K according to optical observation. The processing map provides the optimal hot working temperature and strain rate, which is beneficial in choosing technical parameters for this high-strength alloy.
Read full abstract