Abstract

Strain-rate sensitivity (SRS) is an important parameter to describe the thermodynamic behavior in plastic deformation process. In this research, the variation of SRS associated with steady-state DRX in P/M superalloys was quantitatively investigated. Based on the theoretical analysis and microstructural observation of the alloy after deformation, the SRS coefficient was employed to identify the deformation mechanism of the alloy. Meanwhile, the corresponding relationship between SRS coefficient m, stress exponent n and deformation mechanism was revealed. The stress exponent n in the Arrhenius constitutive model of P/M superalloys was calculated. In addition, it is found there is a relatively stable stress exponent range (n = 4-6), indicating that dislocation evolution played as the major hot deformation mechanism for P/M FGH4096 superalloy. Furthermore, the Bergstrom model and Senkov model were used and combined together to estimate the SRS coefficient in the steady-state DRX and the m value maintains at 0.2-0.22, which are consistent with the microstructural evolution during hot deformation process. The SRS coefficient distribution map and power dissipation efficiency distribution map were finally constructed associated with the microstructural evolution during hot deformation, which can be used to optimize the processing parameters of the superalloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.