The precise mapping of magnetic fields emitted by various objects holds critical importance in the fabrication of industrial products. To meet this requirement, this study introduces an advanced magnetic detection device boasting high spatial resolution. The device's sensor, an array comprising 256 unpackaged gallium arsenide (GaAs) Hall elements arranged in a 16 × 16 matrix, spans an effective area of 19.2 mm × 19.2 mm. The design maintains a 1.2 mm separation between adjacent elements. For enhanced resolution, the probe scans the sample via a motorized rail system capable of executing specialized movement patterns. A support structure incorporated into the probe minimizes the measurement distance to below 0.5 mm, thereby amplifying the magnetic signal and mitigating errors from nonparallel probe-sample alignment. The accompanying interactive software utilizes cubic spline interpolation to transform magnetic readings into detailed two- and three-dimensional magnetic field distribution maps, signifying field strength and polarity through variations in color intensity and amplitude sign. The device's efficacy in accurately mapping surface magnetic field distributions of magnetic and magnetized materials was corroborated through tests on three distinct samples: a neodymium-iron-boron magnet, the circular magnetic array from a smartphone, and a magnetized 430 steel plate. These tests, focused on imaging quality and magnetic field characterization, underscore the device's proficiency in nondestructive magnetic field analysis.
Read full abstract