Abstract

AbstractOne particularly interesting approach for the deposition of highly pure nanoparticles (NPs) in a solvent‐ and surfactant‐free process is the gas phase synthesis of nanoparticles using a gas aggregation source (GAS) based on magnetron sputtering. Apart from the possibility of tuning the NP size‐distribution via process parameters, e.g., gas flow, pressure, and aggregation length, multicomponent targets in a GAS enable in operando composition tuning of alloy NPs. However, in the practical application of the GAS, two main challenges have to be addressed: low target utilization and low conversion efficiency. This work describes a magnetron with a concentrically moveable erosion zone (cMEZ magnetron), and showcases its applicability for the deposition of metal (Cu) and metal alloy (CuNi) NPs via GAS. The cMEZ magnetron relies on an in operando reconfigurable outer magnet array, which enables tuning of the position of the erosion zone, impacting target utilization. By weighting the targets and substrates before and after deposition, the conversion efficiency is determined for different operating pressures and magnet configurations. Furthermore, the multicomponent target approach is tested with the cMEZ magnetron, which enabled the in operando composition tuning of the Ni content in CuNi NPs from ≈5 to ≈35 at% only by varying the magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call