In this study, a robust adaptive beamformer based on constant modulus (CM) criteria is developed to improve the robustness of the array beamforming, which is a reconstructing minimal optimization for solving the mismatch problem of weight vector caused by steering vector mismatch. In the global positioning system (GPS) L1 band, firstly, a GPS array signal is modelled by designing a dual-polarized antenna array. Secondly, the distortion problem of beamforming is formulated in the traditional minimum variance distortionless response (MVDR) beamformer. For repairing the weight vector mismatch problem, a novel beamformer based on the CM envelope response is proposed to reconstruct MVDR beamforming in the array processing. Besides, min-max penalty criteria are used to enable the beamformer to allocate more degrees of freedom (DOFs) when penalizing the MVDR beamformer responses. Finally, an auxiliary two-element real variable is designed to plan the proposed beamformer. But it is still a nonconvex quadratic programming problem, so an alternating direction method of multipliers (ADMM) is employed to transform the objective function into several subproblems. Illustrative numerical simulation results are provided for validating the effectiveness of the proposed beamformer by comparing it with other existing approaches.