Abstract

A dense array of global positioning system (GPS) receivers is a useful tool to study ionospheric disturbances. Here we report observations by a Japanese GPS array of ionospheric holes, i.e., localized electron depletion. They were made by neutral molecules in exhaust plumes (e.g., water) of ballistic missiles from North Korea, Taepodong‐1 and ‐2, launched on 31 August, 1998, and 5 April, 2009, respectively. Negative anomaly of electron density emerged ∼6 min after the launches in the middle of the Japan Sea, and extended eastward along the missile tracks. By comparing the numerical simulation of electron depletion and the observed change in ionospheric total electron content, we suggest that the exhaust plumes from the Taepodong‐2 second stage effused up to ∼1.5 × 1026 water molecules per second. The ionospheric hole signature was used to constrain the Taepodong‐2 trajectory together with other information, e.g., coordinates of the launch pad, time and coordinates of the first stage splashdown, and height and time of the second stage passage over Japan. The Taepodong‐2 is considered to have reached the ionospheric F region in ∼6 min, flown above northeastern Japan ∼7 min after the launch, and crashed to the Pacific Ocean without attaining the first astronautical velocity. The ionospheric hole in the 1998 Taepodong‐1 launch was much less in size, but it is difficult to compare directly the thrusts of the two missiles due to uncertainty of the Taepodong‐1 trajectory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.