Conventional bisphenol A epoxy resins cannot meet the requirements of the new generation of electronic/electrical industries in terms of dielectric properties and flame retardancy and are challenging to reprocess after molding, resulting in waste of resources and environmental hazards. Therefore, a tetrafunctional active ester curing agent (TIE) was successfully synthesized by a one-pot method using biomass protocatechualdehyde as raw materials, followed by curing DGEBA to prepare an epoxy vitrimer (TIE/DGEBA). MHHPA/DGEBA was chosen for comparison since the –OH was also absent after curing. The results showed that TIE/DGEBA had good combinatorial performance, thanks to the unique structure of TIE, including active ester units, siloxane chains, and aromatic Schiff base groups. TIE/DGEBA possessed a lower dielectric constant (2.9 vs. 4.0) compared to MHHPA/DGEBA, which was attributed to the synergistic effect of the less-polar siloxane chain segments, bulky benzene structure, and lower cross-linking density (1971 vs. 733 mol/cm3) of TIE/DGEBA. The aromatic Schiff base not only imparted good thermal stability (T30% = 418.0 vs. 422.2 °C) to TIE/DGEBA but ensured that it allowed for recycling and reprocessing. After solvent recycling, the resin can be remolded without significant change in tensile strength (53.0 vs. 46.3 MPa). TIE/DGEBA displayed better flame retardancy with higher residual weight (28.2 % vs. 5.5 %), lower total heat release (29.6 vs. 43.5 kJ/g), and good resistance to thermal oxidization. The structural and performance characteristics of TIE/DGEBA offer a strategy for designing multifunctional epoxy-based materials in electrical/electronic applications.
Read full abstract