A numerical model was developed that predicts topography and surface roughness in ball-end milling processes, based on geometric tool–workpiece intersection. It allows determining surface topography as a function of feed per tooth and revolution, radial depth of cut, axial depth of cut, number of teeth, tool teeth radii, helix angle, eccentricity and phase angle between teeth. It determines profile roughness parameters, as well as areal roughness parameters such as average roughness Sa, maximum peak-to-valley roughness St, volume of summit material V and a proposed new time coefficient Ct. It relates surface roughness to milling time. Moreover, feed per tooth and revolution f and radial depth of cut Rd were calculated that minimise parameters Sa· Ct, St· Ct and V· Ct. Minimum Sa· Ct and St· Ct provide minimum roughness with minimum milling time. Minimum V· Ct means minimum milling time with minimum material removal in manual polishing operation. At low radial depth of cut, roughness is low regardless of feed employed. On the contrary, at high radial depth of cut, roughness depends remarkably on feed: the higher the feed, the higher the roughness. In order to simultaneously minimise roughness and time, high f and low Rd should be used. In that case also volume of summit material is minimised.