AbstractChanges in Arctic sea ice have exerted remarkably effects on the Eurasian climates, but it is unclear whether Arctic sea ice also contributes to Northwest China's ongoing summer drought. This study investigates the influence of the interannual variability of Arctic sea ice on the June drought in Northwest China from 1979 to 2021. It reveals that the early‐autumn sea ice in the East Siberian Sea is correlated with drought conditions in June in Northwest China, with a more pronounced connection during the period of 2000/2001–2020/2021 (P2) compared to 1979/1980–1999/2000 (P1). Mitigated drought in Northwest China is associated with anomalously high sea ice concentration (SIC) in the East Siberian Sea. Further analysis suggests that the strengthened link may be due to greater SIC variability in the East Siberian Sea during P2 than P1. In P2, positive early‐autumn SIC anomaly is linked to anomalous northeasterly winds, promoting drier soil and widespread cooling in the East European Plain. This dry soil signal may persist into the ensuing spring and early summer, inducing an anticyclonic circulation anomaly over Siberia, which could facilitate the water vapor convergence in Northwest China, thereby enhancing humidity conditions in the region. The insights from this study could offer valuable information for improved prediction of droughts in Northwest China.