AbstractPurpose:The objective of this article is to evaluate the dosimetric efficacy of volumetric modulated arc therapy (VMAT) in comparison to dynamic conformal arc therapy (DCAT) and 3D conformal radiotherapy (3DCRT) for very small volume (≤1 cc) and small volume (≤3 cc) tumours for flattened (FF) and unflattened (FFF) 6 MV beams.Materials and methods:A total of 21 patients who were treated with single-fraction stereotactic radiosurgery, using either VMAT, DCAT or 3DCRT, were included in this study. The volume categorisation was seven patients each in <1, 1–2 and 2–3 cc volume. The treatment was planned with 6 MV FF and FFF beams using three different techniques: VMAT/Rapid Arc (RA) (RA_FF and RA_FFF), dynamic conformal arc therapy (DCA_FF and DCA_FFF) and 3DCRT (Static_FF and Static_FFF). Plans were evaluated for target coverage (V100%), conformity index, homogeneity index, dose gradient for 50% dose fall-off, total MU and MU/dose ratio [intensity-modulated radiotherapy (IMRT) factor], normal brain receiving >12 Gy dose, dose to the organ at risk (OAR), beam ON time and dose received by 12 cc of the brain.Result:The average target coverage for all plans, all tumour volumes (TVs) and delivery techniques is 96·4 ± 4·5 (range 95·7 ± 6·1–97·5 ± 2·9%). The conformity index averaged over all volume ranges <1, 2, 3 cc> varies between 0·55 ± 0·08 and 0·68 ± 0·04 with minimum and maximum being exhibited by DCA_FFF for 1 cc and Static_FFF/RA_FFF for 3 cc tumours, respectively. Mean IMRT factor averaged over all volume ranges for RA_FF, DCA_FF and Static_FF are 3·5 ± 0·8, 2·0 ± 0·2 and 2·0 ± 0·2, respectively; 50% dose fall-off gradient varies in the range of 0·33–0·42, 0·35–0·40 and 0·38–0·45 for 1, 2 and 3 cc tumours, respectively.Conclusion:This study establishes the equivalence between the FF and FFF beam models and different delivery techniques for stereotactic radiosurgery in small TVs in the range of ≤1 to ≤3 cc. Dose conformity, heterogeneity, dose fall-off characteristics and OAR doses show no or very little variation. FFF could offer only limited time advantage due to excess dose rate over an FF beam.
Read full abstract