Arabinogalactan proteins (AGPs) are ubiquitous components of the amorphous plant extracellular matrix. They are characterized by a high proportion of sugar moieties, heterogeneity of their protein backbone and carbohydrate chains. It is known that AGPs form a complex network with other basic constituents in cell wall thus it may also play a role in softening process of fruit. The use of enzymatic degradation and cell wall polysaccharide directed probes are valid analytical tools for the study of developmental modification of the fruit structure. However, it is unknown whether pectolytic enzymes affect AGPs. Thus, the aim of the current work is to detect AGP epitopes in situ to understand the impact of selected degradation enzymes on various carbohydrate moieties of AGPs. Secondly, there are no data with clarification of the impact of vitamin C on fruit ripening processes at the cellular level; hence, we also focused on the effect of vitamin C on the arrangement of AGPs as important constituents of the polysaccharide-proteoglycan network in the fruit cell wall. The results indicate that the distribution of the examined AGP carbohydrate moieties differs, which are related to changes in tissue architecture. The absence of glycan chains causes disruption in establishment of correlations between cell wall constituents and rearrangement in the cell wall structure. The induced modifications of cell walls are not comparable to alterations occurring in naturally ripening fruit, which allows a conclusion that the synergistic action of a wide variety of factors influences ripening.
Read full abstract