Like in mammals, the plant immune system has evolved to perceive damage. Damaged-associated molecular patterns (DAMPs) are endogenous signals generated in wounded or infected tissue after pathogen or insect attack. Although extracellular DNA (eDNA) is a DAMP signal that induces immune responses, plant responses after eDNA perception remain largely unknown. Here, we report that signaling defenses but not direct defense responses are induced after eDNA applications enhancing broad-range plant protection. A screening of defense signaling and hormone biosynthesis marker genes revealed that OXI1, CML37 and MPK3 are relevant eDNA-Induced Resistance markers (eDNA-IR). Additionally, we observed that eDNA from several Arabidopsis ecotypes and other phylogenetically distant plants such as citrus, bean and, more surprisingly, a monocotyledonous plant such as maize upregulates eDNA-IR marker genes. Using 3,3′-Diaminobenzidine (DAB) and aniline blue staining methods, we observed that H2O2 but not callose was strongly accumulated following self-eDNA treatments. Finally, eDNA resulted in effective induced resistance in Arabidopsis against the pathogens Hyaloperonospora arabidopsidis, Pseudomonas syringae, and Botrytis cinerea and against aphid infestation, reducing the number of nymphs and moving forms. Hence, the unspecificity of DNA origin and the wide range of insects to which eDNA can protect opens many questions about the mechanisms behind eDNA-IR.