Abstract

Abscisic acid (ABA) is a critical hormone for plant survival under water stress. In this study, large-scale mutants of the Arabidopsis ecotype Columbia-0 (Col-0) were generated by ethyl methanesulfonate (EMS)-mutagenesis, and an improved root elongation under water-stress 1 (irew1) mutant showing significantly enhanced root growth was isolated under a water potential gradient assay. Then, irew1 and ABA-related mutants in Arabidopsis or tomato plants were observed under water potential gradient assay or water-deficient conditions. ABA pathway, Ca2+ response, and primary root (PR) elongation rate were monitored in addition to DNA- and RNA-Seq analyses. We found that based on phenotyping and transcriptional analyses, irew1 exhibited enhanced PR growth, ABA, and Ca2+ responses, compared to wild type subjected to water stress. Interestingly, exogenous Ca2+ application enhanced PR growth of irew1, ABA-biosynthesis deficient mutants in Arabidopsis, and tomato plants, in response to water potential gradients or water-deficient conditions. In combination with other ABA-related mutants and pharmacological studies, our results suggest that ABA is required for root elongation associated with Ca2+ influx in response to water stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.